High Potential of a Transposon mPing as a Marker System in japonica × japonica Cross in Rice
نویسندگان
چکیده
Although quantitative traits loci (QTL) analysis has been widely performed to isolate agronomically important genes, it has been difficult to obtain molecular markers between individuals with similar phenotypes (assortative mating). Recently, the miniature inverted-repeat transposable element mPing was shown to be active in the japonica strain Gimbozu EG4 where it had accumulated more than 1000 copies. In contrast, most other japonicas, including Nipponbare, have 50 or fewer mPing insertions in their genome. In this study we have exploited the polymorphism of mPing insertion sites to generate 150 PCR markers in a cross between the closely related japonicas, Nipponbare x Gimbozu (EG4). These new markers were distributed in genic regions of the whole genome and showed significantly higher polymorphism (150 of 183) than all other molecular markers tested including short sequence repeat markers (46 of 661). In addition, we performed QTL analysis with these markers using recombinant inbred lines derived from Nipponbare x Gimbozu EG4, and successfully mapped a locus involved in heading date on the short arm of chromosome 6. Moreover, we could easily map two novel loci involved in the culm length on the short arms of chromosomes 3 and 10.
منابع مشابه
Fingerprinting of some Egyptian rice genotypes using Intron-exon Splice Junctions (ISJ) markers
DNA fingerprinting has become an important tool for diversity assessment and varietal identification in plant breeding programs. Semi- random PCR primers targeting intron-exon splice junctions (ISJ) were used to evaluate the potential of these markers in identification and classification of rice genotypes. A total of 12 ISJ primers were used for screening fourteen Egyptian rice genotypes, inclu...
متن کاملEarly Embryogenesis-Specific Expression of the Rice Transposon Ping Enhances Amplification of the MITE mPing
Miniature inverted-repeat transposable elements (MITEs) are numerically predominant transposable elements in the rice genome, and their activities have influenced the evolution of genes. Very little is known about how MITEs can rapidly amplify to thousands in the genome. The rice MITE mPing is quiescent in most cultivars under natural growth conditions, although it is activated by various stres...
متن کاملIn planta mobilization of mPing and its putative autonomous element Pong in rice by hydrostatic pressurization.
The miniature Ping (mPing) is a recently discovered endogenous miniature inverted repeat transposable element (MITE) in rice, which can be mobilized by tissue culture or irradiation. It is reported here that mPing, together with one of its putative transposase-encoding partners, Pong, was efficiently mobilized in somatic cells of intact rice plants of two distinct cultivars derived from germina...
متن کاملThe rice miniature inverted repeat transposable element mPing is an effective insertional mutagen in soybean.
Insertional mutagenesis of legume genomes such as soybean (Glycine max) should aid in identifying genes responsible for key traits such as nitrogen fixation and seed quality. The relatively low throughput of soybean transformation necessitates the use of a transposon-tagging strategy where a single transformation event will produce many mutations over a number of generations. However, existing ...
متن کاملUnveiling the genetic loci for a panicle developmental trait using genome-wide association study in rice
Panicle size has a high correlation with grain yield in rice. There is a bottleneck to identify the additional quantitative trait loci (QTL) for panicle size due to the conventional traits used for QTL mapping. To identify more genetic loci for panicle size, a panicle developmental trait (LNTB, the length from panicle neck-knot to the first primary branch in the rachis) related to panicle size ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes
دوره 16 شماره
صفحات -
تاریخ انتشار 2009